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Preface

The purpose of this study is to compare the basis function and

iterat~on methods for solving the Fredhoim integral equations of the first

kind. The equation arises in the analysis of data from underground

nuclear effects simulations. The Fredholm equation is ill-posed and so its

answer is dependent upon the method of solution.

Often the Fredhom equation is solved with the iteration method tested

here, but the basis function method, tested by Capt Russell Daniel, is

another productive approach.

There are two people that I would like to thank for their help during

this study. First I am Indebted to my faculty advisor, LCDR Kirk A.

Mathews, for his help and patience during this study. The second person

is Capt Russell Daniel. His program and thesis were essential to my

understanding of the basis function method.
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Abstract

The purpose of this study is to compare methods for solving the Fred-

holm integral equation of the first kind. The Fredholm equation has sev-

eral piactical applications including geology, superconductivity, and

aerodynamics. Of specific interest is its application to determining

radiation spectra using data from underground nuclear effects simulations.

The two basic solution methods studied were the basis function and

the iteration methods. The basis function method is a representation of

the unfolded spectrum by a series of Planckian or cubic spline functions.

The iteration method scales the unfolded spectrum so that ft's weighted

integral over a given interval matches that of the actual spectrum.

Both basis function methods produced excellent results when the

actual spectrum was a sum of it's basis functions. The cubic spline method

* produced unfolded spectra which were good approximations for discontinuous

actual spectra. However, there was a significant dropoff of the spectrum

for the cubic spline for higher energies.

The iteration method produced accurate approximations for actual

spectra that were both basis function and discontinuous spectra. There

were two problems with this method: the unfolded spectra were discontinu-

ous at the discontinuities of the weighting function and noisy data some-

times produced large discontinuities in the unfolded spectra.

For the four test cases studied, the iteration method proved to be the

best because of it's ability to unfold a variety of spectra (in contrast to

the Plancklan basis function method) and It's good behavior at higher

energies for noisy data (in contrast to the cubic spline method).
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I. Introduction

Background

The Fredholm integral equation of the first kind has widespread

application in areas such as acoustics, optics (3:1-I), superconductivity.

geophysics, and aerodynamics (4:261-263). A particular application of the

Fredhoim equation is to determine the radiation spectra of simulated

nuclear weapons effects. The terminology in this study originates from this

application.

The Fredholm integral equation of the first kind has the following

form:

Y - fa b R (,nj)S d(1

where

Y(E) = detector output signal

R(E. r) - detector response function

s(fn)dI- radiation spectrum

In this application, the practical aspects of data collection force

several limitations on the detectors. The limitations occur because the

number of detectors is finite, the detectors have a finite resolution, E/E,

and recording, transmitting, and calibrating errors affect the data.

0
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Recording and transmitting errors are reduced by using two types of

detectors, "open" (fluorescer system) and "closed" (filter/fluorescer system)

response detectors. Theoretical modeling and calibration measurements

determine the response functions of the detectors.

Problem

The Fredholm equation is ill-posed; therefore, there are an infinite

number of spectra, s(n)dr which would have the same detector output,

Y(e) The three methods of unfolding used in this study each produce an

approximate solution to the Fredholm equation. The main purpose of this

study is to compare how well the approximate spectra, from these methods,

reproduce the original spectrum. To do this comparison, all three methods

of solution were incorporated into a computer program.

Scope

Three approximate methods for solving Equation (1) will be used dur-

ing this study: the basis function method, the Iteration method, and the

modified iteration method.

The measured signals were calculated assuming the actual spectrum,

which in practice would not be known. The unfolding methods produce

unfolded spectra. These unfolded spectra are then compared to the actual

spectrum.

There are four actual spectra that will be used in this study to com-

pare these methods: a twc-temperature Planckian spectrum with a spike

2



added for reasonable detail, a Heaviside function, a spike on a flat

spectrum, and a triangular spike on a flat spectrum.

The first spectrum represents a simplified version of expected nuclear

effects radiation; the basic spectrum being composed of multiple Planckians

with the spike added as a reasonable detail. The latter three spectra are

tested to see how the unfolding methods deal with different discontinuous

behavior.

The tests were conducted first on unfolded spectra with no noise.

This indicates how well the methods intrinsically work. Then the methods

were applied to the same spectra in a more realistic environment of exper-

imental uncertainties.

Assumptions

In order to compare with previous work by Daniel (3) similar assump-

tions are made. They are:

1. There are 20 detectors. 13 of these are "closed" and 7 are

"open" response detectors.

2. The resolving power of the detectors, E/IAE, is approximately

1.5.

3. The response functions are exact. Their exact form is given

in Section II.

3



Also, several tacit assumptions are made to restrict the infinite number of

solutions to the unique unfolded spectrum given by the methods studied.

These depend upon the method used and are discussed in Section II.

General Approach

The actual spectrum, which is in practice unknown, is assumed in

order to calculate the measured signal by an approximate solution of Equa-

tion (1). One of the three unfolding methods is then used to determine the

unfolded spectrum, given the measured signal and the detector response

function.

For the basis-function method, a X2 test statistic is used to stop the

method. The iteration methods are, in practice, stopped when the spectrum

is Judged reasonable. If the method is stopped too soon, the effects of the

smoother have not yet had a chance to work. If the method is stopped too

late, all the details of the spectrum have been washed out.

The unfolded spectra will then be compared to the original spectrum,

the actual spectrum, and the spectra of the other methods.

Sequence of Presentation

The presentation of the rest of the study is as follows. Chapter II,

"Theoretical Discussion", details the theory of the unfolding techniques

used. Chapter III, "Computer Program Implementation", describes the pro-

gram which implements the unfoiding techniques. Chapter IV, "Results and

0
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Discussion", reviews the results of the unfolding techniques. Chapter V,

"Conclusion and Summary", summarizes the results and presents the conclu-

sions.

9
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II. Theoretical Development

Introduction

In this chapter the theoretical background of several unfolding tech-

niques are discussed. The following topics are addressed: the detector

response function, the definition of the spectra, the definition of the

signals, the definition of unfolding methods, the flux non-negativity con-

straint, the formulation of the X2 test statistic, the minimization of the x'

statistic, and the normal distribution for simulating measurement error.

Linear Fredholm Integral Equation of the First Kind

The detectors, used to measure spectra of underground nuclear simu-

lations, are designed to have art output proportional to the spectrum in the

energy range E to - AR

y,(E)AE= R,(E)s(E)AE (2)

where

y,(E)AE = is the incremental output of detector i due to the

spectrum In the energy range E to E* AE

R,(E) = response of detector I to the part of the spectrum at

the energy .

s(E)Ah = the amount of the spectrum that is in the energy

range I to If " L

The output signal of detector I due to the total spectrum would be:

* 6



Y,' y,(E)dE - f R,(E)s(E)dE (3)

where

Y,= the output signal of detector I in response to the entire

energy spectrum.

This is a linear Fredholm integral equation of th#e first kind.

Detector Response Function

The detector response function, R1(E), is the normalized output of

detector, 1, due to the portion of the spectrum at the energy E. These

response functions are calibrated to a known spectrum and are assumed for

* this study to be the same for the unknown source being measured.

In a realistic experiment, multiple detectors (response functions) are

used simultaneously and their results are compared in an effort to reduce

measurement errors. There are two types of response functions used in

this study: "open" and "closed". The "open" detector system is a fluorescer

detector that has a zero response for energies less than the k-edge of the

fluorescer and an exponentially-decreasing response for higher energies as

shown in Figure I.

The equation for the "open" response function (3:3-3) Is given by:

*7



00 for E<E °

R per,(E (4)

where

R= the response function for the "open" detector i

f= the k-edge of the fluorescer for detector i

E = energy

Figure I is an example of an "open" response function. The sensitivity is

the amplitude of the response function of "open" detector 15. The energy

axis is in units of the k-edge of the fluorescer of detector 1, EO. All

0 energy units in this study are given in units of EO.

*8
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FIGURE I: Example of an "open" response function
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The "closed" detector system is a filter-fluorscer detector which

shapes the "open" detector-type response into a more pulse-like envelope.

This envelope, or inband response, is between the k-edges of the filter and

the fluorescer. Both detector systems studied are asymmetric.

The equation for the closed response function (3:3-3) Is given by:
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0 for E<E °

R cled (E I-)exp2E0,))exp[O0.25 E)] for E? !E<E,' 5
(E - for) E (5

(T.)( - exp[-2( .) ])exp[- I.S(if] for E > E,'

Figure II is an example of a closed response function. The sensitivity is

the amplitude of the response function of "open" detector 15. The energy

axis is in units of the k-edge of the fluorescer of detector 1, EO.

FIGURE I: Example of a "closed" response function
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Both the "open" and "closed" response functions discussed above are

ideal. In the presence of calibration and measurement errors, the real

response function is perturbed in the following way:

SR.(E)+ A R(6)

where

R:(E) = the actual response function

AR,(E) = the change In the response function due to calibration

and measurement errors. This change could be negative giving

a smaller value for the response function.

Deflnition of Spectra

0 Three spectra are used In this study: the predicted spectrum, the

actual spectrum, and the unfolded spectrum. The predicted spectrum,

Sp(E), Is the spectrum expected from theoretical calculations. This spec-

trum is known.

The actual spectrum, So(E), Is the spectrum to which the detectors

respond. In the field tests, the actual spectrum is unknown and to some

extent, unknowable. For the purpose of comparing the performance of the

unfolding methods, -,.(R) is chosen. The ability of the unfolding methods

to recover so(E) is the measure of the method's suitability.

0 I IIiII



The unfolded spectrum. Su(E), is calculated from detector output and

response function data to be an approximation to Sa(E). The predicted

spectrum may be used as an initial guess for the unfolding methods.

Definition of Signals

A signal, Yi produced by a spectrum s(E)dE, Is the detector output

given by the following equation:

K,. R,(E)s(E)dE (7)

There are four signals associated with the three spectra already

defined: the ideal signal, the measured signal, the predicted signal, and the

unfolded signal. The ideal signal, ydao, is the signal produced by the

actual, but unknown, spectrum as measured by an ideal instrument. The

ideal signal Is unknown because of errors In calibration and uncertainties

in measurement and detection. The ideal signal is given by:

Y [deaz f R (E)S (E)dE (8)

The measured signal, Y7 '° ' 'd, Is the signal measured by the detectors

with all the calibration errors and measurement and detection uncertainties

included. The measured signal is given by:

* 12



iy rfteasL = fe k(E)Sa(E)dE (9)

The predicted signal, Ya"r"dt, is the signal expected from the predicted

spectrum as measured by the Ideal instrument. The predicted signal is

given by:

SpR(E)S(E)dE (10)

Finally the unfolded signal, y d is the signal that would be pro-

duced by the unfolded spectrum as measured by the ideal instrument. The

unfolded signal is given by:

Y un°jold - R,(E)S,,(E)dE (11 )

The signal data from underground nuclear effects simulations are fre-

quently specified as a ratio to the predicted signal; it is In this form that

the X 2 test statistic will be formulated. The measured-to-predicted ratio

is given by:

y rneasttred

b,= yf ce (12)

and the unfolded-to-predicted ratio Is given by:

* 13



yun/olded
ytnodd(13)

y predicted

Errors in the Measurement Process

There are two basic errors that occur during the measurement process:

measurement error and calibration error. The measurement error is the

uncertainty in the measurement of the detector output. This uncertainty

includes errors introduced in the transmission of the signal, the recording

of the signal, and the reading of the signal.

The calibration error is the uncertainty in the determination of the

detector response function. Experiments are conducted to determine the

detector response function by using known x-ray sources. These calibra-

* tions are subject to errors in the measurement process.

The experimenter accounts for these errors by the specifying a

measurement standard deviation, a, for each of the detectors. These devi-

ations are based on past experiments and detector calibrations.

Normal Distribution for Simulating Measurement Error

The measurement errors are assumed, in this study, to be normally

distributed. They are simulated by random number sampling of a Gaussian

probability distribution function, which is approximated by a sum of con-

tinuous uniform distributions i.e., a sum of random numbers. Let X be a

random variable which Is defined by:

* 14



X = 1 xn-6 (14)

where

x,1E /[O, I]

U[O, I] Is a uniform distribution on the interval 10,11.

The mean for X Is (8:565):

t tx=E[X]-F[12U[O, I]-6]= 12E[U[O, 1]]-6-0 (1S)

Since c12 for a uniform distribution of the interval [0,11 Is given by the

following (8:570):

-1 (16)
a 12

and the standard deviation is (8:566):

I
aXz=012U[o, 1-6=120U[Oj =j 2 12 - 1(17)

12

then

X~G(4 =o;=1=) (18)

which is the standard normal distribution.

* 15



Definition of Unfolding Methods

Given that the measured signal (y',,), predicted spectrum (S,(E)),

and the response functions for the detectors (R,(E) ) are known, then the

problem is to solve for the actual spectrum, S,(E), in the system of equa-

tions:

Yrmeasur, f R(E)Sa(E)dE (19)

However this problem is Ill-posed (6:175), in that there are an infinite

number of spectra, S,(E). which will satisfy this equation. So additional

assumptions are Imposed to determine a unique solution, Su(E), such that

su(E)-sa(E). The unfolded signals should equal, or at least approximate,

the measured signals. The closeness of the approximation depends on the

estimation of the accuracy of the measurement and is discussed below. So,

Y w fLr1fl(E)S,(E)dE f RJ(E)S,(E)dE (20)

or, in order to solve numerically

kmax k max
t,7 .Ba I R.kS AESIR. k S S, EE k (21)

k-O k-0

The other constraints are dependent upon the method of solving for Su(E).

* 16



Basis Function Method

There are three methods, examined In this study, to compute a "rea-

sonable" spectrum for Su(E): basis function(s) expansion, iteration of a bet-

ter fit and smoother operation, and Iteration of a better fit using a

smoothed response function. The basis function expansion, with Planklan

and cubic spline basis functions, was studied by Daniel (3:1-4). The idea

is to approximate .,(E) as a sum of basis function(s), so S,(E) is chosen

to satisfy:

I max

S £() 1 ! (22)

where

j = summation index over basis functions

8 ;.ka B;(E;q) is the basis function j

q = the defining parameters for Bj

The parameters, q, define the basis function and are dependent upon

the type of basis function. For Plankian basis functions these parameters

reduce to a single value, the temperature of the Plankian. However, for

cubic splines, the parameters include the locations of the knots and the

temperature of the Plankian fit between the next-to-last and last knots.

Substituting Equation (22) Into Equation (21) gives,

* 17



. .. ,h..k max / max

Y,,,,to, I= t. k [a B/k]/LE (23)

or rearranging.

y&nifoled= a (24)

where

max

I R k 16 kALk (25)
k-O

In this method, a guess is made for the initial unfolded spectrum by

specifying the parameters (a, and ) and number of basis functions

) As a consequence B, can be determined and since R,., and AE, are

known then 9,., can be calculated. Finally yA#Of° d can be evaluated by

using Equation (24)..

This initial guess is modified, by changing a, and/or q to minimize the

X2 difference between I and Y",.oa". The method is terminated when

the x 2 test statistic of the difference is sufficiently small. I.e.,

2(yrncLsremrLC yun/Qlad) <X2cg (26)

The formulation of the )2 test statistic is discussed below.

r•18



Iteration Method

The second procedure, to compute a reasonable S,.(), is the iterative

method. The iterative method Is the repeated application of two spectrum

changing operations: the "better fit" and "smoother". The "better fit" algo-

rithm forces the unfolded signal, for the energy Interval E to F + dE, to

equal that of the measured spectrum:

RI(E)S as (E)d E a R(E)sf'0  (E)dE (27)

This is accomplished by scaling the guessed spectrum, for that energy

interval, by the ratio of the measured to unfolded signal.

(,L ~ Y mreasu~redR (E)sR (E)d= s()sX (E)dE (28)R,(FSy unfolded u

where,

U %, -,H.. is better-fit of interatlon n of the unfolded

spectrum.

'-" Q "E- is iteration n of the unfolded spectrum.

Equation (28) can be rewritten by using Equations (12) and (13):

R(E)s (E)dE =f3R,(E)s() (E) dE (29)

- ,19



where

f'f(E)Sa(E)dE Y" Y'2/Y b,

r= = (30)
JoR,(E)S,(E) dE Yt Y'/Y c,

For the underground nuclear effects simulations, the detectors are

designed to have overlapping energies to reduce calibration and measure-

ment errors. So. the total unfolded signal for an energy interval for all

the detectors is given by

Z R,(E)S,, (E)dE= X 3,R,(E) S,,(E)dE (31)

but S F ()dE and Slj)(E)dE are not dependent upon the detector index

so,

IYR,(E) S, "'(E)dE=I t3,Ri(E) S ",)(E)dE (32)

finally, the effect of the "better fit" on the last spectrum is given by:

I fa, R, (K

S(2)(E)dE= [L - 1 '.S (E)dE (33)
Z R,(E)

20



The detector response functions, RJ(E), have discontinuities about the

k-edges of its filter and flourescer, FIGURES I and I. During the "better

fit" algorithm, the scaling factor in Equation (33) can be significantly dif-

ferent even between adjacent detectors.

FIGURE III gives an Illustration of such a case, the obvious

discontinuities are at 16 and 24 Eo. Unrealistic features that are a func-

tion of the method, such as the discontinuous slope, are called an artifact

of the method.

FIGURE III: Example of discontinuities after a better-fit operation

teI,,I
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i
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The second spectrum-modifying operation of the iteration method, the

"smoother", is designed to spread-out the artifact of the "better-fit" algo-

rithm so that the resulting spectrum is more realistic.

The averaging of the artifacts with the surrounding spectrum, is done

in the following manner:

Sl"*')(E)dE - E)Sz)(E-)dE - dE (34)

f (E. E')d E"

or written to be solved numerically,

E fk.k.Sk, I ,

Sk"")dE dE (50)

. fk tAE,"O k'-I

produces a spectrum that is nearer to So(E)dE than SLJ-)(E)dE.

There were several constraints placed upon the averaging kernel, f.,

during this study. For computational ease, the kernel was normalized i.e.,

for all E

ff (EE')dE'. 1 (36)

or for discrete energy bins,

* 22



X fk,k.AEk. 1 (37)
k-I

This simplifies Equation (50) to

k' I I's nI dE=[xfk.k,,., ) A:. JdE (38)

The second constraint Imposed on je,,. is that &,.,- Is symmetric about

k i.e., for constant energy bins:

f kk-Sk--- f k.k-&k (39)

This is equivalent to saying that the averaging algorithm does not favor

higher or lower energies. For energy bins that are geometrically spaced

i.e., for any k the following is true:

Ekl =rEk (40)

where r Is a constant, then the symmetry of /,,.,. is expressed as:

f k,.,k r f fk,,k (41)

Finally because /,.,, is symmetric about k, a symmetric difference ker-

nel was often used to improve the computational efficiency of the "smooth-

ing" algorithm i.e.,

I23



k.kk -kI (42)

This changes Equation (55) to the following:

5kmax
s ~' dE= X AF.IdE (43)S( "dF= I f Jt-k'-'" AE

fl--k ax

This is generally much easier to compute because the interval

[-8kfa1 ,6kmx] of Equation (58) is much smaller than the interval [1,k.,,].

The iteration method is employed In the following way. An initial

spectrum, Sg..,,(E)dE S " (E)dE, is guessed. The "better-fit" algorithm,

Equation (49) is applied to Slo)(E)dE to produce S( )(E)dE. The

smoother, Equation (58), Is then applied to produce S 1 (E)dF the first

iteration. At this point, a judgement would have to be made to evaluate if

the first iteration is reasonable. If it is, then the first iteration Is the

answer. If not, then the iteration method is reapplied until one of the

spectra Is reasonable.

In practice, the "better-fit" and "smoother" algorithms compete against

each other; the "better-fit" pushes the unfolded spectrum toward the actual

spectrum while the "smoother" pushes the unfolded spectrum away. This

leads to the last assumption for the iteration method:

* 24



The final unfolded spectrum, which is a compromise between the "bet-

ter fit" and "smoother" algorithms, is a good approximation to the actual

spectrum. I.e., there is a best N (which should appear in the early

iterations) such that:

,(N d d

-( ldg StE)dE(

The third method is the iteration of a better fit using a response

function smoothed only around the k-edges. This method is related to the

second method, with the "smoother" algorithm buried in the initial smooth-

ing of the response function. However, in this case, the "smoother" is

local and weak compared to the "better fit" algorithm, so the overall effect

is primarily due to the "better fit" algorithm.

Modified Iteration Method

In order to remove artifacts yet not work against the "better-fit"

algorithm, a third method is discussed which is a modification of the Itera-

tion method. The modified iteration method works as follows: the response

function is smoothed only around the k-edges of the detectors i.e.,

R1 k=-R'l k (45)
k'--*km 2
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and then normalized. In uther words, the "smoother" has already been used

on the response function to prevent the discontinuities during the "better-

fit" algorithm. The "better-fit" algorithm now has the following modified

form:

S >(E)dE :  aR,(E) S(")(E)dE (46)

Most of the previous discussion of the iteration method also applies to the

modified iteration method.

Errors in the Unfolding Process

There are two errors associated with the unfolding process: approxima-

tion of an integral by a summmation and the ill-posedness of the Fredholm

0integral equation. Whenever an Integral is replaced by a summation in

order to be numerically computed there is an error associated with the

replacement:

J R (E)s(E)dEm Y Ri.,s1AE, (47)
I- I

where,

R R, E+-AE/
2'

0 is the error associated the approximation
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8 is dependent upon the bin size, A E,

Another error is due to the ill-posedness of the Fredholm integral

equation. Because the Fredholm Integral equation of the first kind is ill-

posed, there are an infinite number of the solutions that satisfy the inte-

gral i.e.,

JR,(E)s,(E)dEm-J R,(E)s 2(E)dE (48)

doesn't guarantee that s,(E)- 2(E). The spectrum determined is dependent

upon the unfolding method.

The actual spectrum is not expected to be determined by the any of

the methods presented here. The unfolding methods produce a particular

solution to the Integral equation which has a reasonable shape e.g., a con-

tinuous slope everywhere. Different methods can be used to produce rea-

sonable shapes and some of the methods will produce reasonable shapes for

certain detector signals.

Flux Non-negativity Constraints

Negative intensity, for radiation, Is meaningless. However during the

unfolding process, the spectra can become negative at some energies. So a

non-negativity constraint is applied such that:
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. 0 for 5"(E) 50
S"(E)=S (E) for S',(E)>O (49)

Formulation of x 2 Test Statistic

The test statistic used in terminating the basis function method uses

the "goodness of fit" test of the measured-to-predicted ratios, bi, to the

unfolded-to-predicted ratios, ci, and is given by:

,4$tr~moz C -bt

x2 2 (50)

where

o,= the standard deviation of the measured-to-predicted ratio,

bi. based on estimates of detector calibration and measurement

uncertainties.

When

X v (51)

where

v = number of degrees of freedom of the unfolding method
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then the unfolded and measured spectra are statistically equivalent. For

the basis function method, the number of degrees of freedom is the number

of parameters describing the basis function(s) i.e., a, and q,.

Minimization of X2 Test Statistic

To improve the fit of the unfolded spectrum calculated by the basis

function method, there is a systematic method to minimize X2 by varying

the coefficients and parameters: a, and q,. The Flecher-Powell (F-P)

minimization technique was used to determine the approximate direction of

the minimum for X2 in the basis functions' parameter space. The F-P tech-

nique takes an initial point, P, in the parameter space (which is determined

by the unfolded spectrum) and calculates the direction in the following

way:

S'=-H (P) (52)

then the unit normal direction is given by,

(S3s= --- (53)

where H is initially a unit matrix of the parameter space.

Once the direction, S, has been approximately determined by the F-P

technique then an appropriate distance, w, in the parameter space has to

be determined to minimize X. This is determined in the following manner:

* 29



the point, P, in parameter space has a value of X2(p)and a slope of

(J/Jw)[X2(P)] along the direction S. A small step, w, is taken along S

from P to a new point, P+w'S. The value, X2(P~w'S), and the slope

(/3w)[X 2(P'w'S)]are determined at the new point. With the two points

and slopes, a cubic fit approximating the slice in parameter space can be

calculated and a reasonable distance, w, is determined for the closest

approach to the minimum along that slice.

FIGURE IV: Minimization by the Fletcher-Powell Technique

S

For the next use of the F-P technique, the unit matrix H is changed

toward the minimum by the following formulae (6:76):
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H=H+A-B (54)

where

,nRRT  (5
RT Q (5

B HQQ TH (56)

R 0 2(p tVS) X(p)(57)

V - v./ W)X P-W-S - Y" C'W)X) I P ko' )

If ' 2is still too large, then the F-P technique is reapplied until the result

Is small enough.
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1lI. Computer Program Implementation

Introduction

With the theoretical background developed, we can now discuss imple-

mentation of the unfolding algorithm. In this section, programming consid-

erations are discussed.

Input of the Test Data

Data provided by a nuclear effects test includes: the predicted spec-

trum, S,(E), the calibrated detector response functions, R,(E), the

measured-to-predicted ratios, b, and the detector standard deviations, a.

These variables are simulated by specifying them in a self-consistent man-

Sner.

R,(E) is assumed to be exact and given by Equations (4) and (5). The

modified iteration method alters these response functions as part of its

unfolding process, however the original response functions are used in the

calculation of the X 2 test statistic.

The detectors' standard deviation is specified as 0.15 by compatibility

with Daniel's initial assumptions (3:1-3). Further discussion of the mea-

surement error is covered in section II.

In reality, the predicted spectrum is based upon theoretical treatment

of the physics of the actual simulation configuration and results from past

slmuratlons. This spectrum should be a very good approximation of the

actual spectrum, which is unknown. For this study, the predicted specta
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are always a good approximation to the actual spectra.

Although the measured-to-predicted ratios could have been chosen

directly, the specification of the actual spectrum and calculating b, with

Equations (10). (11), and (12) allow a direct comparison of So(E) to S (E).

Basis Functions

Each of the spectra can be specified either as a basis function or

explicitly listed data in a file. There are two types of basis functions

used in this study: Plancklans and cubic splines. The Plancklan basis

functions, B, , as used in Equation (24) are written as:

15 E 3

B1 (58)
nkT expl(-I

where.

E = center bin energy in units of Eo

T = temperature of Plankian in units of E.

k = Boltzmann's constant

The cubic spline basis functions are a composite of four cubic splines

connecting each knot to it's surrounding knots. Each of the splines are

given by the Lagranglan function:

3
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*~~~ 4 E(E- L.Ukfokn..ot, (59)
4,.(E) = FTg

where,

E = center bin energy, in units of E,

knoti = energy of a surrounding knot, in units of E6

knotk = energy of the reference knot, in units of E,

The first, second, and last knots are located at 0, E,, I 0O respec-

tively, with the weights of the first and last knots always set to 0.

Modifications are used for knots near the edges of the energy Interval.

If knotk has adjacent knots that are the first or second to last then,

because a cubic spline could not be calculated to join the remaining knot,

they are joined by linear curves. The second-to-last and the last knots

are joined by a Planckian for the same reason.

Iteration Method

The iteration methods use two different schemes to smooth out the

spectrum after the better-fit algorithm, flat-averaging and normal-

averaging. The flat-averaging method gives equal weighting for all energy

bins within the specifed interval. The normal-averaging method gives a

normal weighting of the energy bins about a specified point.

Both methods compensate for Intervals too close to the end of the
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energy interval (EO to 128E0) by truncating the long side of the averaging

interval so that it is symmetric about the central point of the interval.

Otherwise the smoothing function would bias the unfolded spectrum unreal-

istically away from the ends of the energy interval. The two smoothing

schemes incorporate the possibility of nonconstant spacing.

In order to reduce the run time of the iteration method, the linear

spacing of the energy bins was changed to a geometric spacing. This

reduced the time to calculate the integrals involved in the measured-to-

predicted and unfolded-to-predicted ratios. The overall run time was

reduced by a factor of seven.

The modified iteration and basis function methods were left with linear

energy bin spacing. This was done for the following reasons. The other

unfolding methods, with linear spacing, had comparable running times to the

geometric energy spacing version of the iteration method. The linear spac-

ing was kept as a check against the results of the iteration's geometric

energy bin spacing.

The stopping point for the iteration methods is based upon the judge-

ment of the person running the program. It is almost an art to stop the

program when it has nearly converged to the actual spectrum, but has not

gone too far as to completely smooth out the original data. For the pur-

poses of comparison in this study, both iteration methods were stopped

after five iterations. This is comparable to the number of iterations used

in the field (7).
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*IV. Results and Discussion

Introduct!on

This Section covers the cases run using the unfolding program dis-

cussed In the last section. The topics covered are the following: the vali-

dation cases, the effect of noise on the validation cases, the tests cases,

and the effect of noise on the test cases.

Validation Cases

The validation cases are to ensure that the program is running pro-

perly. A "perfect" unfolding technique would produce an unfolded spectrum

is equal to the actual spectrum. This perfect reproduction of the original

spectrum can not be required because of the Ill-posedness of the Fredholm

equation, as discussed in section II. However, the unfolded spectrum

should be a close approximation to the actual spectrum. The Initial guess

for the unfolded spectrum was the same for the iteration, modified Itera-

tion, and the Planckian basis function methods.

For the Iteration, modified Iteration, and Planckian basis function

methods, the validation cases consisted of three cases:

1. The actual and guessed spectra are different Planckians.

This is to show that the method will produce unfolded spectra

that converges toward the actual spectrum. The actual spectrum

was T = 3E0 and coefficient = 0.75. The guessed spectrum

was T = 2E0 and coefflent = 0.5.
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2. The actual and guessed spectra are the samte. This is to

show how an initially correct guess is changed by the unfolding

method. The actual and guessed spectra were T = 3E0 and

coefficient = 0.75.

3. The actual spectrum is a two temperature Planckian spectrum

and the guessed spectrum is a one temperature Planklan

spectrum. The actual spectrum was Ti = 3E0, coefficient 1 =

0.75, T2 = 10, and coefficient 2 = 5. The guessed spectrum

was T = 10 and coefficient = 10.

For case 1, the modified iteration method produced an unfolded spec-

trum that follows the actual spectrum, but has discontinuities near the

k-edges of the response functions, FIGURE V. This is characteristic of the

iteration method.
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FIGURE V: Modified Iteration Method, Case 1
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The unfolded spectrum from the iteration method had smoother and had

less abrupt discontinuities than the modified iteration's solution did.
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FIGURE VI: Iteration Method, Case 1
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The Plancklan basis function method gave an unfolded spectrum that

appeared identical to the actual spectrum. All three methods successfully

produced an unfolded spectrum which a good approximation to the actual

spectrum, when the initial guess was wrong.

For case 2. both iteration methods and the Plankian basis function

method produced an unfolded spectrum that was nearly identical to the

actual spectrum (no figure was produced for this case because the spectra

could not be distinguished). in other words, the unfolding methods didn't

distort a correct guess.
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For case 3, both iteration methods produced over-/under-shots for the

greater energies, Figures VII. The Plancklan method produced a good

representation of the actual spectrum, as expected for a method to repre-

sent Plancklan spectra.

FIGURE VII: Modified Iteration Method, Case 3
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For the cubic spline, the validation cases consisted of two cases:

1. The actual and guessed cubic splines were different. The

actual spectrum had six knots at the following locations: 0,

EO, 5E0, 30E0, 60E0, and 128E0. The coefficients at these

locations were 0, 5, 3, 2, 1, and 0, respectively. The temperature
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of the Planckian curve Joining the last two knots was 15E0.

The guessed spectrum had six knots at the following locations:

0, EO, 4E0, 35E0, 50E0, and 128E0. The coefficients at these

locations were 0, 4, 4, 3. 2, and 0, respectively. The temperature

of the Planckian curve joining the last two knots was 13E0.

2. The actual and guessed cubic splines were identical. The

spectra have the same knot locations and coefficients as the

actual spectrum of test case 1.

The cubic spline basis function method produced an unfolded spectrum,

for each of the validation cases, that was nearly identical to the actual

spectrum. However when the initial guess for the cubic spline basis

function was chosen a little less carefully, the method didn't converge.

Effects of Errors on the Validation Cases

The effect of measurement and calibration errors was simulated by the

addition of random numbers to the measured-to-predicted ratio, bi, as dis-

cussed in the previous section. A demostration of this effect on the vali-

dation cases is illustrated by Figure X. In this figure, the modified

iteration method was run in the presence of noise for case 2 (the guessed

spectrum was correct). The collection of unfolded spectra has an envelope

which follows the actual curve, but each unfolded spectrum has details

which could have been interpreted as being significant.
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FIGURE X: Modified Iteration with Noise, Case 2
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The dips in the unfolded spectra happened In the intervals where the

noise from overlapping detectors were both negative. The peaks were

where the noise from the overlapping detectors were both positive. When

the noise was positive for one detector and negative for the overlapping

detector, the overall effect of the noise was negligable.

There was another effect of the noise that was pecticular to the iter-

ation method. The Iteration method was run using a geometric spacing of

the energy bins in order to significantly shorten the run times. For the

iteration method for cases with no noise, the difference between the spec-

tra using linear spacing and geometric spacing was negligable.
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The noisy signal produced, for the geometric energy bins, very short

spikes for small energies and long spikes for the larger energies. This is

an artifact of the unfolding method. In order to give a realistic compari-

son for the noisy signal data produced by the iteration method, the linear

energy bin spacing was used.

Test Cases

There were four actual spectra used to compare the unfolding methods.

The following is a list of the actual spectra used for the test cases:

1. Two Planckians with a spike. This spectrum was chosen to

compare the ability of the methods to recover broad structure

(the two Plankians) with their ability to recover finer detail

(the spike).

The Planckians were Ti = 2E0, coefficient I = 2, T2 =

lOEO, and coefficient 2 = 5. The spike was 11/8 EQ wide

centered at IOEO.

The guessed spectrum was the Plancklan spectrum T = 10EO

and coefficient = 10. For the Planckian basis function method,

a second two temperature Planckian was also used.

2. Heaviside function. This spectrum, and the following two,

represent the ability of the unfolding method to represent

discontinuous behavior of the actual spectrum. The actual
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spectrum was 1 for energies less than 10E0 and 0.5 for energies

greater than 10EO.

The guessed spectrum for all methods was 0.75 for all

energies. The Plankian basis function wasn't used for this or

the following two discontinuous actual spectra.

3. Barrier function. The actual spectrum was 1 between energies

8E0 and 12E0, but 0.5E0 for all other energies. The guessed

spectrum, for all the methods, was 1 for all energies.

4. Triangle function. The actual spectrum was an isosceles

triangle with an apex of I at OEO and a value of 0.5 at the

base. The base extended from 6E0 to 14E0. The actual

spectrum was 0.5 for all other energies. The guess spectrum,

for all the methods, was I for all energies.

Both the modified iteration and iteration methods made an attempt to

represent the spike by a broader shape at the same energy as shown in

Figures XI and XII, respectively. The pulse seems to disrupt the spectrum

for larger energies. This is probably due to the overlapping response

functions in the energy range of the spike.
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FIGURE XI: Modified Iteration, Test Case 1
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FIGURE XII: Iteration, Test Case 1
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The Planckian basis function method produced an unfolded spectrum

composed of two Plancklans of different temperatures. Because of the rela-

tive temperatures and coefficients, the spectrum appears to be a one tem-

perature Planckian as shown in Figure XIII.
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FIGURE XIII: Planckian Basis Function, Test Case 1
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The two Iteration methods have a ragged approximation to the Heavi-

side spectrum, rounding off the corners and crossing the discontinuity at

the midpoint, Figure XIV and XV. For the cubic spline, the unfolded

spectrum can't be distinguished from the actual spectrum. This is not

unexpected as the cubic spline has a good ability to represent straight

lines.
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FIGURE XIV: Modified iteration, Test Case 2
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FIGURE XV: Iteration, Test Case 2
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For test case 3, the two iteration methods move their unfolded spectra

to follow the actual spectrum Into the spike discontinuity, Figure XVI and

Figure XVII. The cubic spline's unfolded spectrum with seven knots follows

the discontinuous spike of the actual spectrum as shown in Figure XVIII.

Except for the dropoff for the higher energies, the cubic spline is a better

approximation than the iteration methods.

*49



FIGURE XVI: Modified Iteration, Test Case 3
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FIGURE XVII: Iteration, Test Case 3
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FIGURE XVIII: Cubic Spline, Test Case 3
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Both iteration methods, follow the triangular actual spectrum rounding

off the apex and edges of the trlan.'7e similarly to the representation in

case 3 as seen in figures XIX and XX. For the discontinuities studied, the

iteration methods are not that particular of the shape of the spike. The

cubic spline is a good representation of the actual spectrum (figure XXI),

but it still has the high energy dropoff seen in the previous case.
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FIGURE XIX: Modified Iteration, Test Case 4
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FIGURE XX: Iteration, Test Case 4
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FIGURE XXI: Cubic Spline, Test Case 4
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Noise on the Test Cases

For each of the test cases and unfolding methods, ten unfolded spectra

were generated to determine the bars in Figures XXII and XXIII. In each

of the figures the actual spectrum is graphed with the bars superimposed

upon the spectrum to represent the spread of spectra due to noisy signals.

In figure XXII, the Plancklan method has smaller spreads in the noisy

spectra than the iteration method. But the iteration method has it's most

significant spread near the pulse which the Planckian method almost

ignores.
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FIGURE XXII: Iteration and Planckian Unfolding Methods with Noisy Data,

Test Case 1
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In figure XXIII, the cubic spline and iteration methods have compara-

ble spread in their noisy spectra. Both methods have their largest spread

near the spike, which both attempt to represent, and decrease with

increasing energy. However the cubic spline still has large variations for

large energy, where the spread of unfolded spectra from the iteration

method goes to nearly zero.

* 56



FIGURE XXIII: Iteration and Cubic Spline Unfolding Methods with Noisy

Data,

Test Case 4

p 1 itu e

1.2

iteration method

/ Ocubic splivm

8.9

8.4

6.2

6 I I I I I

I 6 11 16 ZI 26 31 36 41 46 51 56

onrgy [E0i

.. 57



V. Summary and Conclusion

Summary

Validation of the Methods. The purpose of the validation cases is to

ensure that the basis function, Iteration, and the modified iteration meth-

ods were working correctly. Validation cases one through three for the

basis function methods produced unfolded spectra which were nearly an

exact match to the actual spectra.

The iteration and modified iteration methods produced spectra which

had discontinuities near the k-edges of the response function. However

the overall shape was a good representation of the actual spectra.

Test Cases. In case one, composed of two temperature Planckians and

a spike, the Planckian basis method proved to be a bad representation of

the actual spectrum. The method didn't indicate that the pulse was there

and the overall representation was that of nearly a one temperature

Planckian. The iteration methods, on the other hand proved to be more

adept at approximating the shape of the spike. For case four, the itera-

tion methods and the cubic spline were both good at representing the dis-

continuous shape of the spectrum. The unfolded spectrum of the cubic

spline was better at representing the actual form the the spike, but it had

a significant dropoff for higher energies.

The test cases for the noisy measurement signal demonstrated that the

basic shape of the unfolded spectra varies considerably from trial to trial,

even if there Is no change in the data. The spread In the spectra is very
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I
small for the Planckian method, but it doesn't represent the discontinuity

of the spike. The spread for the cubic spline approximates that of the

iteration methods for low energies, but remains large for large energies.

Conclusions:

The results from the validation and test cases indicates the following

conclusion can be drawn:

1. Details of unfolded spectra, from real data produced during

underground nuclears effects tests, can not be reasonably

assumed to reflect real details In the actual spectra. Either

the details of the actual spectra do not survive the unfolding

process in the presence of noise or the details on the unfolded

spectra are added during the unfolding process.

2. The actual spectrum can not be unfolded exactly, even if

there were no measurement noise.

3. For actual spectra which is very nearly Planckian, the

Planckian basis function method is the best. However for the

test cases in this study, the iteration methods do better than

the Planckian method.

4. The cubic spline method is comparable to, if not better than,

the iteration method for representing discontinuous spectra.

It does have significant a dropoff for higher energies and a

larger spread of spectra with a noisy signal.
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I VI. Recommendations

The following recommendations are for continuing work In this area.

First, determine the Impact of more detail In the specification of the

detectors e.g., different standard deviations and response functions.

Secondly, the development of another method to make the unfolded

spectra more reasonable looking. Perhaps a scheme where the local points

on the unfolded spectra are balanced to make the behavior of the large

scale less abrupt.

Thirdly, the use of basis functions, other than Planklan and cubic

splines, to represent the spectra.

Lastly, determine how the shape and size of the pulse perturbation

can affect the unfolded spectrum and if there Is a minimum size and shape

perturbation which can be unfolded.
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Abstract

The purpose of this study is to compare methods for solving the Fred-

holm integral equation of the first kind. The Fredholn equation has several

practical applications including geology, superconductivity, and aerodynamics.

Of specific interest is its application to determining radiation spectra using

data from underground nuclear effects simulations.

The two basic methods studied were the basis function method and the iter-

ation method. The basis function method is a representation of the unfolded

spectrum by a series of Planckian or cubic spline functions. The iteration

method scales the unfolded spectrum so that its weighted integral over a given

interval matches that of the actual spectrum.

Both the basis function methods produced excellent results when the

actual spectrum was a sum of it's basis functions. The cubic spline method

produced unfolded spectra which were good approximations for discontinuous

actual spectra. However, there was a significant dropoff of the spectrum

for the cubic spline unfolded spectra for higher energies.

The iteration methods produced accurate approximations for actual spectra

that were both basis functions and/or discontinuous spectra. There were two

problems with this method: the iteration method produced spectra which were

discontinuous at the discontinuities of the weighting function and risy data

can produce large discontinuities in the unfolded spectrum.

For the cases studied, the iteration method is the best method, because

of it's ability to unfold a variety of spectra (in contrast to the Planckian

basis function method) and it's good behavior at the higher energies for noisy

data (in contrast to the cubic spline method).
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